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A library for generating spline-based paths for robots.

The “squiggles” created by this path generation library allow for smooth, fast autonomous movements. Robots can
follow the generated paths through the use of the wheel velocities calculated at each point along with an appropriate
feedback controller.

BASICS 1
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2 BASICS



CHAPTER

ONE

GETTING STARTED

1. Install the Library

The list of installation options and their instructions can be found in Installation.

2. Find Your Robot’s Constraints

The guide in Constraints should help you identify the size and speed of your robot.

3. Generate Some Paths

You can follow along with the examples in Example Paths or jump straight into the Library API.

4. Add a Closed Loop Controller

It is possible to directly command the generated wheel velocities to a robot but any mismatch between your robot
measurements and reality will cause your robot to go off course. Writing a closed-loop path following controller is an
exercise left to the reader but the Controller Suggestions document has some tips to help get you started.
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4 Chapter 1. Getting Started



CHAPTER

TWO

TABLE OF CONTENTS

2.1 Installation

The Squiggles source code contains no external dependencies. You can include Squiggles in any existing project that
uses C++20 standard by adding the contents of the include and src directories to your project.

You can also add Squiggles to your project as a static library by downloading the latest release from Github.

For instructions on building the library in a development environment see the Github CONTRIBUTING doc.
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2.2 Example Paths

2.2.1 Basic Path

The above path can be created in three simple steps. First, define the Constraints with the robot’s maximum velocity,
acceleration, and jerk when driving:

#include "squiggles.hpp"

const double MAX_VEL = 2.0; // in meters per second
const double MAX_ACCEL = 3.0; // in meters per second per second
const double MAX_JERK = 6.0; // in meters per second per second per second

squiggles::Constraints constraints = squiggles::Constraints(MAX_VEL, MAX_ACCEL, MAX_
→˓JERK);

Then measure the width between the robot’s wheels and create a SplineGenerator with the constraints and the width
measurement:

#include "squiggles.hpp"

const double MAX_VEL = 2.0; // in meters per second

(continues on next page)
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(continued from previous page)

const double MAX_ACCEL = 3.0; // in meters per second per second
const double MAX_JERK = 6.0; // in meters per second per second per second
const double ROBOT_WIDTH = 0.4; // in meters

squiggles::Constraints constraints = squiggles::Constraints(MAX_VEL, MAX_ACCEL, MAX_
→˓JERK);
squiggles::SplineGenerator generator = squiggles::SplineGenerator(

constraints,
std::make_shared<squiggles::TankModel>(ROBOT_WIDTH, constraints));

And finally let’s set the starting and ending poses as shown in the image above:

#include "squiggles.hpp"

const double MAX_VEL = 2.0; // in meters per second
const double MAX_ACCEL = 3.0; // in meters per second per second
const double MAX_JERK = 6.0; // in meters per second per second per second
const double ROBOT_WIDTH = 0.4; // in meters

squiggles::Constraints constraints = squiggles::Constraints(MAX_VEL, MAX_ACCEL, MAX_
→˓JERK);
squiggles::SplineGenerator generator = squiggles::SplineGenerator(

constraints,
std::make_shared<squiggles::TankModel>(ROBOT_WIDTH, constraints));

std::vector<squiggles::ProfilePoint> path = generator.generate({
squiggles::Pose(0.0, 0.0, 1.0),
squiggles::Pose(4.0, 4.0, 1.0)});

2.2. Example Paths 7
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2.2.2 Tight Path

The generated paths can get a bit more interesting when trying to make tight turns. The path shown above sends
negative velocities to the inner wheel during the turns in order to make turns in a small space.

We can reuse the SplineGenerator from the previous section for this second path. It is often easiest, though not
required, to create the SplineGenerator once and call its generate() method as many times as needed.

std::vector<squiggles::ProfilePoint> path = generator.generate({
squiggles::Pose(0.0, 0.0, 1.0),
squiggles::Pose(0.0, 2.0, 1.0)});

8 Chapter 2. Table of Contents
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2.3 Constraints

The robot’s Constraints provide the maximum allowable dynamics for the generated paths. Careful measurement and
configuration of these parameters ensures that the path will not expect the robot to move more quickly than it actually
can. Resolving such discrepancies in the generated path and reality is an important first step in ensuring that the robot
performs reliably.

2.3.1 Maximum Velocity

The simplest constraint for the robot’s motion is its Maximum Velocity. This value can be found by one of two
methods: calculation and measurement. There are a lot of options for measuring the maximum velocity; we’ll focus
on the calculation option here.

Calculating the theoretical maximum velocity can be done easily without using the actual robot. So long as you know
the wheel diameter and motor velocity for the drivetrain you can calculate the robot’s maximum velocity.

Let’s say we have 4 inch wheels and 200rpm motors on the robot’s drive. We’ll first convert these values into the right
units:

4 inches * 0.0254 inches/meter = 0.1016 meters

2.3. Constraints 9
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200 rpm / 60 seconds/minute = 3.333 revolutions per second

We then find the circumference of the wheels and multiply by the rate of rotation of the motor to get the velocity.

Circumference = PI * Diameter = 3.14 * 0.1016 = 0.319 meters
Velocity = Circumference * Rotation Rate = 0.319 * 3.333 = 1.063 meters per second

2.3.2 Maximum Acceleration

Let’s assume that we’re using the same robot as above with the 4 inch wheels and 200 rpm motors. If we’re using
the VEX V5 Smart Motors <https://www.vexrobotics.com/276-4840.html#additional> on the drive then our 200 rpm
motors will have a stall torque of 1.05 Nm. We won’t be able to hit that value while keeping the robot moving and
we don’t want to push the motors that hard all the time. Let’s set our maximum torque at 0.5 Nm for the robot’s
movements to keep the current down and the motors happy.

We can use the physics equations for torque and force to find the maximum acceleration for our robot. First, let’s find
the maximum force that the robot can deliver.

Torque = wheel radius * force
0.5 Nm = (0.1016 meters / 2) * force
Force = 9.843 N

We can then use Newton’s second law and the mass of our fictional robot to find the maximum acceleration. It is
important to remember that we are looking for the sum of the forces so we will account for each motor on the drive.
Let’s give our fictional robot 4 drive motors for a total of 9.843 * 4 = 39.372 Newtons.

Sum of Force = mass * acceleration
39.372 = 10 Kg * acceleration
acceleration = 3.937 meters per second per second

2.3.3 Maximum Jerk

The calculations for maximum jerk are not nearly as convenient as the above calculations for velocity and acceleration.
The easiest option for this parameter is to set it to an arbitrary value that’s a bit larger than your acceleration, like twice
as large. This can be a good fiddle-factor to get the robot’s movement to be smoother or more aggressive than default.

2.3.4 Resources

• Class Reference

2.4 Controller Suggestions

The motion profiles help the robot’s path-following abilities considerably but there are many factors that could prevent
the robot from following the generated path. It is recommended to pair the output of Squiggles with a feedback
controller.

A velocity PID controller is an easy start but a controller optimized for path following is the best choice. Small errors
in a velocity controller are fine with systems like a flywheel but can cause a path-following robot to go wildly off
course.

10 Chapter 2. Table of Contents
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2.4.1 Pure Pursuit Controller

The Pure Pursuit Controller is the defacto standard for closed loop path following. Instead of trying to make the robot
move to the nearest point along the path when it diverges the Pure Pursuit Controller anticipates moving to a point
ahead on the path. The target point is the nearest point plus a look ahead distance. The Pure Pursuit Controller closes
the control loop by using the robot’s measured position – calculated by something like odometry – and finds the look
ahead point from that measured position.

The Pure Pursuit Controller has been used extensively in FRC. A couple examples of its use for FRC are listed below:

• Team 254’s Implementation

• XiaoXie’s Implementation

The Pure Pursuit algorithm is best explained by Alonzo Kelly’s white paper. It is often helpful to reference this
document in conjunction with an example Pure Pursuit implementation when writing your own take on the controller.

2.4.2 Ramsete Controller

The Ramsete Controller is another controller that is used for following paths. It does not look ahead to follow the path
like the Pure Pursuit Controller but is best suited for correcting small errors.

Like Pure Pursuit, the Ramsete Controller has become quite popular in FRC. The WPILib library includes an imple-
mentation for the Ramsete Controller:

• WPILib Implementation

The following white papers are excellent resources to use when constructing your Ramsete Controller:

• Tyler Veness’ Controls Engineering in the FIRST Robotics Competition

• The original paper detailing the algorithm

2.5 Physical Models

Physical Models define the translation from a velocity and curvature into wheel velocities. This additional limit is
imposed to prevent conditions where the robot’s linear velocity is within the velocity constraint but one of its wheels
would need to exceed the velocity constraint to match the curvature at the point. The generated wheel velocities can
also be used as a feedforward value in the control loop for following the path.

2.5.1 Tank Drive Model

The TankModel defines a Tank Drive model according to the unicycle model. This model translates the linear velocity
and curvature at the point into two values: a velocity for the left side of the robot and a velocity for the right side.
These velocities are used when constraining the robot’s linear velocity. Additionally, the acceleration of each wheel
is accounted for using the robot’s linear acceleration and the curvature at the point. This additional constraint on the
acceleration is applied during the motion profile phase of the path generation.

2.5. Physical Models 11
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2.6 The Math

2.6.1 Quintic Polynomials

Each point along the generated path is determined by a Quintic Polynomial, or a polynomial function of the form
𝑥(𝑡) = 𝑎 * 𝑡5+ 𝑏 * 𝑡4+ 𝑐 * 𝑡3+ 𝑑 * 𝑡2+ 𝑒 * 𝑡+ 𝑓 . 𝑡 is a unitless parameter that represents the length along the path that
the point occurs at, in the range of [0, 1]. There is one polynomial for each dimension that the robot travels through;
we have an x polynomial and a y polynomial for our 2D paths.

The source for the Quintic Polynomial coefficients is Atsushi Sakai’s Python Robotics. The coefficients are set in
accordance with the laws of physics regarding linear movement. The 𝑡 parameter takes the place of time in the physics
equations.

The example code in Python Robotics solves the equation for the coefficients dynamically with numpy but it can be
computed statically. The convenient Symbolab Matrix Equations Calculator solved the matrix of coefficients as a
function of the 𝑡 parameter.

The 𝑡 parameter maps directly to a theoretical duration for the path. The generation process starts with a short duration,
as a faster path would be ideal, and incrementally generates longer and longer paths until the robot’s Constraints are
met.

Note: This duration will differ from the end duration of the path after motion profiling takes place.

2.6.2 Motion Profiles

The trapezoidal motion profile is applied to the path after the 2D positions are computed with the polynomials. This
motion profile constrains the maximum velocity and the maximum acceleration for the robot while leaving jerk un-
constrained. The Quintic Polynomials constrain the path’s acceleration and jerk but do not constrain the velocity so
adding the motion profile is a necessary step.

The profile generates the target velocity and acceleration for the robot at each point along the path through two passes:
a forward pass and then a backward pass. After the velocity and acceleration are determined we reference the physics
equations for linear motion again to set a more accurate time stamp for each of the positions. The forward pass first
sets the starting velocity to the preferred starting velocity set by the user in place of the “dummy” velocity used when
calculating the polynomial. This pass then limits the velocity at each point to no greater than the maximum and then
uses that new velocity value to calculate the necessary acceleration value at the previous point. The backward pass first
sets the ending velocity to the preffered ending velocity and then performs roughly the same limiting as the forward
pass but in reverse. These two passes get the starting and ending velocities matching the velocities set by the user and
keep the path velocities within the limits.

These new velocities and accelerations are used to find new timestamps for each point along the path given the linear
distance between each. These new timestamps do not last long, though, as the next step is to create new points at each
increment of the 𝑑𝑡 value by interpolating between the points at the aforementioned timestamps.

12 Chapter 2. Table of Contents
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2.7 Library API

2.7.1 Class Hierarchy

2.7.2 File Hierarchy

2.7.3 Full API

Namespaces

Namespace squiggles

Contents

• Detailed Description

• Classes

• Functions

Detailed Description

Copyright 2020 Jonathan Bayless Use of this source code is governed by an MIT-style license that can be found in the
LICENSE file or at https://opensource.org/licenses/MIT.

Classes

• Struct Constraints

• Struct ProfilePoint

• Struct SplineGenerator::ConstrainedState

• Struct SplineGenerator::GeneratedPoint

• Struct SplineGenerator::GeneratedVector

• Class ControlVector

• Class PassthroughModel

• Class PhysicalModel

• Class Pose

• Class QuinticPolynomial

• Class SplineGenerator

• Class TankModel

2.7. Library API 13
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Functions

• Function squiggles::deserialize_path

• Function squiggles::deserialize_pathfinder_path

• Function squiggles::nearly_equal

• Function squiggles::serialize_path

• Template Function squiggles::sgn

Namespace std

Classes and Structs

Struct Constraints

• Defined in file_include_constraints.hpp

Struct Documentation

struct squiggles::Constraints

Public Functions

Constraints(double imax_vel, double imax_accel = std::numeric_limits<double>::max(), double
imax_jerk = std::numeric_limits<double>::max(), double imin_accel = std::nan(""))

Defines the motion constraints for a path.

Parameters

• imax_vel: The maximum allowable velocity for the robot in meters per second.

• imax_accel: The maximum allowable acceleration for the robot in meters per second per
second.

• imax_jerk: The maximum allowable jerk for the robot in meters per second per second per
second (m/s^3).

• imin_accel: The minimum allowable acceleration for the robot in meters per second per sec-
ond.

std::string to_string() const
Serializes the Constraints data for debugging.

Return The Constraints data.

14 Chapter 2. Table of Contents
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Public Members

double max_vel

double max_accel

double max_jerk

double min_accel

Struct ProfilePoint

• Defined in file_include_geometry_profilepoint.hpp

Struct Documentation

struct squiggles::ProfilePoint

Public Functions

ProfilePoint(ControlVector ivector, std::vector<double> iwheel_velocities, double icurvature, dou-
ble itime)

Defines a state along a motion profiled path.

Parameters

• ivector: The pose and associated dynamics at this state in the path.

• iwheel_velocities: The component of the robot’s velocity provided by each wheel in me-
ters per second.

• icurvature: The degree to which the curve deviates from a straight line at this point in 1 /
meters.

• itime: The timestamp for this state relative to the start of the path in seconds.

ProfilePoint() = default

std::string to_string() const
Serializes the Profile Point data for debugging.

Return The Profile Point data.

std::string to_csv() const

bool operator==(const ProfilePoint &other) const

2.7. Library API 15
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Public Members

ControlVector vector

std::vector<double> wheel_velocities

double curvature

double time

Friends

friend std::ostream &operator<<(std::ostream &os, const ProfilePoint &p)

Struct SplineGenerator::ConstrainedState

• Defined in file_include_spline.hpp

Nested Relationships

This struct is a nested type of Class SplineGenerator.

Struct Documentation

struct squiggles::SplineGenerator::ConstrainedState
An intermediate value used in the parameterization step. Adds the constrained values from the motion profile to
the output from the “naive” generation step.

Public Functions

ConstrainedState(Pose ipose, double icurvature, double idistance, double imax_vel, double
imin_accel, double imax_accel)

ConstrainedState() = default

std::string to_string() const

Public Members

Pose pose = Pose()

double curvature = 0

double distance = 0

double max_vel = 0

double min_accel = 0

double max_accel = 0
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Struct SplineGenerator::GeneratedPoint

• Defined in file_include_spline.hpp

Nested Relationships

This struct is a nested type of Class SplineGenerator.

Struct Documentation

struct squiggles::SplineGenerator::GeneratedPoint
The output of the initial, “naive” generation step. We discard the derivative values to replace them with values
from a motion profile.

Public Functions

GeneratedPoint(Pose ipose, double icurvature = 0.0)

std::string to_string() const

Public Members

Pose pose

double curvature

Struct SplineGenerator::GeneratedVector

• Defined in file_include_spline.hpp

Nested Relationships

This struct is a nested type of Class SplineGenerator.

Struct Documentation

struct squiggles::SplineGenerator::GeneratedVector
An intermediate value used in the “naive” generation step. Contains the final GeneratedPoint value that will be
returned as well as the spline’s derivative values to perform the initial check against the constraints.

2.7. Library API 17
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Public Functions

GeneratedVector(GeneratedPoint ipoint, double ivel, double iaccel, double ijerk)

std::string to_string() const

Public Members

GeneratedPoint point

double vel

double accel

double jerk

Class ControlVector

• Defined in file_include_geometry_controlvector.hpp

Class Documentation

class squiggles::ControlVector

Public Functions

ControlVector(Pose ipose, double ivel = std::nan(""), double iaccel = 0.0, double ijerk = 0.0)
A vector used to specify a state along a hermite spline.

Parameters

• ipose: The 2D position and heading.

• ivel: The velocity component of the vector.

• iaccel: The acceleration component of the vector.

• ijerk: The jerk component of the vector.

ControlVector() = default

std::string to_string() const
Serializes the Control Vector data for debugging.

Return The Control Vector data.

std::string to_csv() const

bool operator==(const ControlVector &other) const

18 Chapter 2. Table of Contents
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Public Members

Pose pose

double vel

double accel

double jerk

Class PassthroughModel

• Defined in file_include_physicalmodel_passthroughmodel.hpp

Inheritance Relationships

Base Type

• public squiggles::PhysicalModel (Class PhysicalModel)

Class Documentation

class squiggles::PassthroughModel : public squiggles::PhysicalModel

Public Functions

PassthroughModel() = default
Defines a Physical Model that imposes no constraints of its own.

Constraints constraints([[maybe_unused]] const Pose pose, [[maybe_unused]] double curvature,
double vel) override

std::vector<double> linear_to_wheel_vels([[maybe_unused]] double lin_vel, [[maybe_unused]]
double curvature) override

std::string to_string() const override

Class PhysicalModel

• Defined in file_include_physicalmodel_physicalmodel.hpp

Inheritance Relationships

Derived Types

• public squiggles::PassthroughModel (Class PassthroughModel)

• public squiggles::TankModel (Class TankModel)

2.7. Library API 19
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Class Documentation

class squiggles::PhysicalModel
Subclassed by squiggles::PassthroughModel, squiggles::TankModel

Public Functions

Constraints constraints(const Pose pose, double curvature, double vel) = 0
Calculate a set of stricter constraints for the path at the given state than the general constraints based on
the robot’s kinematics.

Parameters

• pose: The 2D pose for this state in the path.

• curvature: The change in heading at this state in the path in 1 / meters.

• vel: The linear velocity at this state in the path in meters per second.

std::vector<double> linear_to_wheel_vels(double linear, double curvature) = 0
Converts a linear velocity and desired curvature into the component for each wheel of the robot.

Parameters

• linear: The linear velocity for the robot in meters per second.

• curvature: The change in heading for the robot in 1 / meters.

std::string to_string() const = 0

Class Pose

• Defined in file_include_geometry_pose.hpp

Class Documentation

class squiggles::Pose

Public Functions

Pose(double ix, double iy, double iyaw)
Specifies a point and heading in 2D space.

Parameters

• ix: The x position of the point in meters.

• iy: The y position of the point in meters.

• iyaw: The heading at the point in radians.

Pose() = default

double dist(const Pose &other) const
Calculates the Euclidean distance between this pose and another.
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Return The distance between this pose and Other.

Parameters

• other: The point from which the distance will be calculated.

std::string to_string() const
Serializes the Pose data for debugging.

Return The Pose data.

std::string to_csv() const

bool operator==(const Pose &other) const

Public Members

double x

double y

double yaw

Class QuinticPolynomial

• Defined in file_include_math_quinticpolynomial.hpp

Class Documentation

class squiggles::QuinticPolynomial

Public Functions

QuinticPolynomial(double s_p, double s_v, double s_a, double g_p, double g_v, double g_a, double
t)

Defines the polynomial function for a spline in one dimension.

Parameters

• s_p: The starting position of the curve in meters.

• s_v: The starting velocity of the curve in meters per second.

• s_a: The starting acceleration of the curve in meters per second per second.

• g_p: The goal or ending position of the curve in meters.

• g_v: The goal or ending velocity of the curve in meters per second.

• g_a: The goal or ending acceleration of the curve in meters per second per second.

• t: The desired duration for the curve in seconds.

double calc_point(double t)
Calculates the values of the polynomial and its derivatives at the given time stamp.

double calc_first_derivative(double t)

2.7. Library API 21
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double calc_second_derivative(double t)

double calc_third_derivative(double t)

std::string to_string() const
Serializes the Quintic Polynomial data for debugging.

Return The Quintic Polynomial data.

Protected Attributes

double a0
The coefficients for each term of the polynomial.

double a1

double a2

double a3

double a4

double a5

Class SplineGenerator

• Defined in file_include_spline.hpp

Nested Relationships

Nested Types

• Struct SplineGenerator::ConstrainedState

• Struct SplineGenerator::GeneratedPoint

• Struct SplineGenerator::GeneratedVector

Class Documentation

class squiggles::SplineGenerator

Public Functions

SplineGenerator(Constraints iconstraints, std::shared_ptr<PhysicalModel> imodel =
std::make_shared<PassthroughModel>(), double idt = 0.1)

Generates curves that match the given motion constraints.

Parameters

• iconstraints: The maximum allowable values for the robot’s motion.

• imodel: The robot’s physical characteristics and constraints

• idt: The difference in time in seconds between each state for the generated paths.

22 Chapter 2. Table of Contents
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std::vector<ProfilePoint> generate(std::vector<Pose> iwaypoints)
Creates a motion profiled path between the given waypoints.

Return A series of robot states defining a path between the poses.

Parameters

• iwaypoints: The list of poses that the robot should reach along the path.

std::vector<ProfilePoint> generate(std::initializer_list<Pose> iwaypoints)

std::vector<ProfilePoint> generate(std::vector<ControlVector> iwaypoints)
Creates a motion profiled path between the given waypoints.

Return A series of robot states defining a path between the vectors.

Parameters

• iwaypoints: The list of vectors that the robot should reach along the path.

std::vector<ProfilePoint> generate(std::initializer_list<ControlVector> iwaypoints)

Protected Functions

template<class Iter>
std::vector<ProfilePoint> _generate(Iter start, Iter end)

The actual function called by the “generate” functions.

Return The points from each path concatenated together

Parameters

• start: An iterator pointing to the first ControlVector in the path

• end: An iterator pointting to the last ControlVector in the path

std::vector<GeneratedPoint> gen_raw_path(ControlVector start, ControlVector end)
Performs the “naive” generation step.

This step calculates the spline polynomials that fit within the SplineGenerator’s acceleration and jerk
constraints and returns the points that form the curve.

std::vector<ProfilePoint> parameterize(const ControlVector start, const ControlVector
end, const std::vector<GeneratedPoint> &raw_path,
const double preferred_start_vel, const double pre-
ferred_end_vel)

Imposes a linear motion profile on the raw path.

This step creates the velocity and acceleration values to command the robot at each point along the curve.

std::vector<ProfilePoint> integrate_constrained_states(std::vector<ConstrainedState> con-
strainedStates)

Finds the new timestamps for each point along the curve based on the motion profile.

ProfilePoint get_point_at_time(const ControlVector start, const ControlVector end,
std::vector<ProfilePoint> points, double t)

Finds the ProfilePoint on the profiled curve for the given timestamp.

This with interpolate between points on the curve if a point with an exact matching timestamp is not found.

2.7. Library API 23



squiggles Documentation, Release 0.1.0

ProfilePoint lerp_point(QuinticPolynomial x_qp, QuinticPolynomial y_qp, ProfilePoint start, Profile-
Point end, double i)

Linearly interpolates between points along the profiled curve.

QuinticPolynomial get_x_spline(const ControlVector start, const ControlVector end, const
double duration)

Returns the spline curve for the given control vectors and path duration.

QuinticPolynomial get_y_spline(const ControlVector start, const ControlVector end, const
double duration)

void enforce_accel_lims(ConstrainedState *state)
Applies the general constraints and model constraints to the given state.

void forward_pass(ConstrainedState *predecessor, ConstrainedState *successor)
Imposes the motion profile constraints on a segment of the path from the perspective of iterating forwards
through the path.

void backward_pass(ConstrainedState *predecessor, ConstrainedState *successor)
Imposes the motion profile constraints on a segment of the path from the perspective of iterating backwards
through the path.

double vf(double vi, double a, double ds)
Calculates the final velocity for a path segment.

double ai(double vf, double vi, double s)
Calculates the initial acceleration needed to match the segments’ velocities.

Protected Attributes

Constraints constraints
The maximum allowable values for the robot’s motion.

std::shared_ptr<PhysicalModel> model
Defines the physical structure of the robot and translates the linear kinematics to wheel velocities.

double dt
The time difference between each value in the generated path.

const int T_MIN = 2
The minimum and maximum durations for a path to take. A larger range allows for longer possible paths
at the expense of a longer path generation time.

const int T_MAX = 15

const double K_DEFAULT_VEL = 0.12
This is factor is used to create a “dummy velocity” in the initial path generation step one or both of the
preferred start or end velocities is zero. The velocity will be replaced with the preferred start/end velocity
in parameterization but a nonzero velocity is needed for the spline calculation.

This was 1.2 in the WPILib example but that large of a value seems to create wild paths, 0.12 worked
better in testing with VEX-sized paths.
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Protected Static Attributes

constexpr double K_EPSILON = 1e-5
Values that are closer to each other than this value are considered equal.

struct ConstrainedState
An intermediate value used in the parameterization step. Adds the constrained values from the motion
profile to the output from the “naive” generation step.

Public Functions

ConstrainedState(Pose ipose, double icurvature, double idistance, double imax_vel, double
imin_accel, double imax_accel)

ConstrainedState() = default

std::string to_string() const

Public Members

Pose pose = Pose()

double curvature = 0

double distance = 0

double max_vel = 0

double min_accel = 0

double max_accel = 0

struct GeneratedPoint
The output of the initial, “naive” generation step. We discard the derivative values to replace them with
values from a motion profile.

Public Functions

GeneratedPoint(Pose ipose, double icurvature = 0.0)

std::string to_string() const

Public Members

Pose pose

double curvature

struct GeneratedVector
An intermediate value used in the “naive” generation step. Contains the final GeneratedPoint value that
will be returned as well as the spline’s derivative values to perform the initial check against the constraints.
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Public Functions

GeneratedVector(GeneratedPoint ipoint, double ivel, double iaccel, double ijerk)

std::string to_string() const

Public Members

GeneratedPoint point

double vel

double accel

double jerk

Class TankModel

• Defined in file_include_physicalmodel_tankmodel.hpp

Inheritance Relationships

Base Type

• public squiggles::PhysicalModel (Class PhysicalModel)

Class Documentation

class squiggles::TankModel : public squiggles::PhysicalModel

Public Functions

TankModel(double itrack_width, Constraints ilinear_constraints)
Defines a model of a tank drive or differential drive robot.

Parameters

• itrack_width: The distance between the the wheels on each side of the robot in meters.

• ilinear_constraints: The maximum values for the robot’s movement.

Constraints constraints(const Pose pose, double curvature, double vel) override
Calculate a set of stricter constraints for the path at the given state than the general constraints based on
the robot’s kinematics.

Parameters

• pose: The 2D pose for this state in the path.

• curvature: The change in heading at this state in the path in 1 / meters.

• vel: The linear velocity at this state in the path in meters per second.
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std::vector<double> linear_to_wheel_vels(double lin_vel, double curvature) override
Converts a linear velocity and desired curvature into the component for each wheel of the robot.

Parameters

• linear: The linear velocity for the robot in meters per second.

• curvature: The change in heading for the robot in 1 / meters.

std::string to_string() const override

Functions

Function squiggles::deserialize_path

• Defined in file_include_io.hpp

Function Documentation

std::optional<std::vector<ProfilePoint>> squiggles::deserialize_path(std::istream &in)
Converts CSV data into a path.

Return The path specified by the CSV data or std::nullopt if de-serializing the path was unsuccessful.

Parameters

• in: The input stream containing the CSV data. This is usually a file.

Function squiggles::deserialize_pathfinder_path

• Defined in file_include_io.hpp

Function Documentation

std::optional<std::vector<ProfilePoint>> squiggles::deserialize_pathfinder_path(std::istream
&left,
std::istream
&right)

Converts CSV data from the Pathfinder library’s format to a Squiggles path.

NOTE: this code translates data from Jaci Brunning’s Pathfinder library. The source for that library can be found
at: https://github.com/JaciBrunning/Pathfinder/

Return The path specified by the CSV data or std::nullopt if de-serializing the path was unsuccessful.

Parameters

• left: The input stream containing the left wheels’ CSV data. This is usually a file.

• right: The input stream containing the right wheels’ CSV data. This is usually a file.
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Function squiggles::nearly_equal

• Defined in file_include_math_utils.hpp

Function Documentation

bool squiggles::nearly_equal(const double &a, const double &b, double epsilon = 1e-5)

Function squiggles::serialize_path

• Defined in file_include_io.hpp

Function Documentation

int squiggles::serialize_path(std::ostream &out, std::vector<ProfilePoint> path)
Writes the path data to a CSV file.

Return 0 if the path was serialized succesfully or -1 if an error occurred.

Parameters

• out: The output stream to write the CSV data to. This is usually a file.

• path: The path to serialized

Template Function squiggles::sgn

• Defined in file_include_math_utils.hpp

Function Documentation

template<class T>
int squiggles::sgn(T v)

Returns the sign value of the given value.

Return 1 if the value is positive, -1 if the value is negative, and 0 if the value is 0.

2.8 Release Notes

2.8.1 0.1.0

Initial Public Release

28 Chapter 2. Table of Contents



squiggles Documentation, Release 0.1.0

2.9 Resources

The following resources were referenced during the writing of Squiggles:

• Team 254’s contributions to WPILib

• Jaci Brunning’s Pathfinder Library

• Atsushi Sakai’s Python Robotics
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