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A library for generating spline-based paths for robots.

The “squiggles” created by this path generation library allow for smooth, fast autonomous movements. Robots can
follow the generated paths through the use of the wheel velocities calculated at each point along with an appropriate
feedback controller.

BASICS 1
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2 BASICS



CHAPTER

ONE

GETTING STARTED

1. Install the Library

The list of installation options and their instructions can be found in Installation.

2. Find Your Robot’s Constraints

The guide in Constraints should help you identify the size and speed of your robot.

3. Generate Some Paths

You can follow along with the examples in Example Paths or jump straight into the Library API.

4. Add a Closed Loop Controller

It is possible to directly command the generated wheel velocities to a robot but any mismatch between your robot
measurements and reality will cause your robot to go off course. Writing a closed-loop path following controller is an
exercise left to the reader but the Controller Suggestions document has some tips to help get you started.
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4 Chapter 1. Getting Started



CHAPTER

TWO

TABLE OF CONTENTS

2.1 Installation

The Squiggles source code contains no external dependencies. You can include Squiggles in any existing project that
uses C++20 standard by adding the contents of the include and src directories to your project.

You can also add Squiggles to your project as a static library by downloading the latest release from Github.

For instructions on building the library in a development environment see the Github CONTRIBUTING doc.
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https://github.com/baylessj/robotsquiggles/releases
https://github.com/baylessj/robotsquiggles/blob/main/CONTRIBUTING.md
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2.2 Example Paths

2.2.1 Basic Path

The above path can be created in three simple steps. First, define the Constraints with the robot’s maximum velocity,
acceleration, and jerk when driving:

#include "squiggles.hpp"

const double MAX_VEL = 2.0; // in meters per second
const double MAX_ACCEL = 3.0; // in meters per second per second
const double MAX_JERK = 6.0; // in meters per second per second per second

squiggles::Constraints constraints = squiggles::Constraints(MAX_VEL, MAX_ACCEL, MAX_
→˓JERK);

Then measure the width between the robot’s wheels and create a SplineGenerator with the constraints and the width
measurement:

#include "squiggles.hpp"

const double MAX_VEL = 2.0; // in meters per second

(continues on next page)
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(continued from previous page)

const double MAX_ACCEL = 3.0; // in meters per second per second
const double MAX_JERK = 6.0; // in meters per second per second per second
const double ROBOT_WIDTH = 0.4; // in meters

squiggles::Constraints constraints = squiggles::Constraints(MAX_VEL, MAX_ACCEL, MAX_
→˓JERK);
squiggles::SplineGenerator generator = squiggles::SplineGenerator(

constraints,
std::make_shared<squiggles::TankModel>(ROBOT_WIDTH, constraints));

And finally let’s set the starting and ending poses as shown in the image above:

#include "squiggles.hpp"

const double MAX_VEL = 2.0; // in meters per second
const double MAX_ACCEL = 3.0; // in meters per second per second
const double MAX_JERK = 6.0; // in meters per second per second per second
const double ROBOT_WIDTH = 0.4; // in meters

squiggles::Constraints constraints = squiggles::Constraints(MAX_VEL, MAX_ACCEL, MAX_
→˓JERK);
squiggles::SplineGenerator generator = squiggles::SplineGenerator(

constraints,
std::make_shared<squiggles::TankModel>(ROBOT_WIDTH, constraints));

std::vector<squiggles::ProfilePoint> path = generator.generate({
squiggles::Pose(0.0, 0.0, 1.0),
squiggles::Pose(4.0, 4.0, 1.0)});

2.2. Example Paths 7
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2.2.2 Tight Path

The generated paths can get a bit more interesting when trying to make tight turns. The path shown above sends
negative velocities to the inner wheel during the turns in order to make turns in a small space.

We can reuse the SplineGenerator from the previous section for this second path. It is often easiest, though not
required, to create the SplineGenerator once and call its generate() method as many times as needed.

std::vector<squiggles::ProfilePoint> path = generator.generate({
squiggles::Pose(0.0, 0.0, 1.0),
squiggles::Pose(0.0, 2.0, 1.0)});

8 Chapter 2. Table of Contents
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2.3 Constraints

The robot’s Constraints provide the maximum allowable dynamics for the generated paths. Careful measurement and
configuration of these parameters ensures that the path will not expect the robot to move more quickly than it actually
can. Resolving such discrepancies in the generated path and reality is an important first step in ensuring that the robot
performs reliably.

2.3.1 Maximum Velocity

The simplest constraint for the robot’s motion is its Maximum Velocity. This value can be found by one of two
methods: calculation and measurement. There are a lot of options for measuring the maximum velocity; we’ll focus
on the calculation option here.

Calculating the theoretical maximum velocity can be done easily without using the actual robot. So long as you know
the wheel diameter and motor velocity for the drivetrain you can calculate the robot’s maximum velocity.

Let’s say we have 4 inch wheels and 200rpm motors on the robot’s drive. We’ll first convert these values into the right
units:

4 inches * 0.0254 inches/meter = 0.1016 meters

2.3. Constraints 9
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200 rpm / 60 seconds/minute = 3.333 revolutions per second

We then find the circumference of the wheels and multiply by the rate of rotation of the motor to get the velocity.

Circumference = PI * Diameter = 3.14 * 0.1016 = 0.319 meters
Velocity = Circumference * Rotation Rate = 0.319 * 3.333 = 1.063 meters per second

2.3.2 Maximum Acceleration

Let’s assume that we’re using the same robot as above with the 4 inch wheels and 200 rpm motors. If we’re using
the VEX V5 Smart Motors <https://www.vexrobotics.com/276-4840.html#additional> on the drive then our 200 rpm
motors will have a stall torque of 1.05 Nm. We won’t be able to hit that value while keeping the robot moving and
we don’t want to push the motors that hard all the time. Let’s set our maximum torque at 0.5 Nm for the robot’s
movements to keep the current down and the motors happy.

We can use the physics equations for torque and force to find the maximum acceleration for our robot. First, let’s find
the maximum force that the robot can deliver.

Torque = wheel radius * force
0.5 Nm = (0.1016 meters / 2) * force
Force = 9.843 N

We can then use Newton’s second law and the mass of our fictional robot to find the maximum acceleration. It is
important to remember that we are looking for the sum of the forces so we will account for each motor on the drive.
Let’s give our fictional robot 4 drive motors for a total of 9.843 * 4 = 39.372 Newtons.

Sum of Force = mass * acceleration
39.372 = 10 Kg * acceleration
acceleration = 3.937 meters per second per second

2.3.3 Maximum Jerk

The calculations for maximum jerk are not nearly as convenient as the above calculations for velocity and acceleration.
The easiest option for this parameter is to set it to an arbitrary value that’s a bit larger than your acceleration, like twice
as large. This can be a good fiddle-factor to get the robot’s movement to be smoother or more aggressive than default.

2.3.4 Resources

• Class Reference

2.4 Controller Suggestions

The motion profiles help the robot’s path-following abilities considerably but there are many factors that could prevent
the robot from following the generated path. It is recommended to pair the output of Squiggles with a feedback
controller.

A velocity PID controller is an easy start but a controller optimized for path following is the best choice. Small errors
in a velocity controller are fine with systems like a flywheel but can cause a path-following robot to go wildly off
course.

10 Chapter 2. Table of Contents

https://www.electronics-tutorials.ws/systems/closed-loop-system.html
https://www.electronics-tutorials.ws/systems/closed-loop-system.html
https://okapilib.github.io/OkapiLib/classokapi_1_1AsyncVelPIDController.html
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2.4.1 Pure Pursuit Controller

The Pure Pursuit Controller is the defacto standard for closed loop path following. Instead of trying to make the robot
move to the nearest point along the path when it diverges the Pure Pursuit Controller anticipates moving to a point
ahead on the path. The target point is the nearest point plus a look ahead distance. The Pure Pursuit Controller closes
the control loop by using the robot’s measured position – calculated by something like odometry – and finds the look
ahead point from that measured position.

The Pure Pursuit Controller has been used extensively in FRC. A couple examples of its use for FRC are listed below:

• Team 254’s Implementation

• XiaoXie’s Implementation

The Pure Pursuit algorithm is best explained by Alonzo Kelly’s white paper. It is often helpful to reference this
document in conjunction with an example Pure Pursuit implementation when writing your own take on the controller.

2.4.2 Ramsete Controller

The Ramsete Controller is another controller that is used for following paths. It does not look ahead to follow the path
like the Pure Pursuit Controller but is best suited for correcting small errors.

Like Pure Pursuit, the Ramsete Controller has become quite popular in FRC. The WPILib library includes an imple-
mentation for the Ramsete Controller:

• WPILib Implementation

The following white papers are excellent resources to use when constructing your Ramsete Controller:

• Tyler Veness’ Controls Engineering in the FIRST Robotics Competition

• The original paper detailing the algorithm

2.5 Physical Models

Physical Models define the translation from a velocity and curvature into wheel velocities. This additional limit is
imposed to prevent conditions where the robot’s linear velocity is within the velocity constraint but one of its wheels
would need to exceed the velocity constraint to match the curvature at the point. The generated wheel velocities can
also be used as a feedforward value in the control loop for following the path.

2.5.1 Tank Drive Model

The TankModel defines a Tank Drive model according to the unicycle model. This model translates the linear velocity
and curvature at the point into two values: a velocity for the left side of the robot and a velocity for the right side.
These velocities are used when constraining the robot’s linear velocity. Additionally, the acceleration of each wheel
is accounted for using the robot’s linear acceleration and the curvature at the point. This additional constraint on the
acceleration is applied during the motion profile phase of the path generation.

2.5. Physical Models 11

https://www.mathworks.com/help/robotics/ug/pure-pursuit-controller.html
http://thepilons.ca/wp-content/uploads/2018/10/Tracking.pdf
https://github.com/Team254/FRC-2019-Public/blob/master/src/main/java/com/team254/lib/control/AdaptivePurePursuitController.java
https://github.com/xiaoxiae/PurePursuitAlgorithm
https://www.ri.cmu.edu/pub_files/pub1/kelly_alonzo_1994_4/kelly_alonzo_1994_4.pdf
https://docs.wpilib.org/en/stable/docs/software/advanced-control/trajectories/ramsete.html
https://www.mathworks.com/help/robotics/ug/pure-pursuit-controller.html
https://docs.wpilib.org/en/latest/index.html
https://github.com/wpilibsuite/allwpilib/blob/master/wpilibc/src/main/native/cpp/controller/RamseteController.cpp
https://file.tavsys.net/control/controls-engineering-in-frc.pdf
https://core.ac.uk/download/pdf/205520525.pdf
http://faculty.salina.k-state.edu/tim/robotics_sg/Control/kinematics/unicycle.html
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2.6 The Math

2.6.1 Quintic Polynomials

Each point along the generated path is determined by a Quintic Polynomial, or a polynomial function of the form
𝑥(𝑡) = 𝑎 * 𝑡5+ 𝑏 * 𝑡4+ 𝑐 * 𝑡3+ 𝑑 * 𝑡2+ 𝑒 * 𝑡+ 𝑓 . 𝑡 is a unitless parameter that represents the length along the path that
the point occurs at, in the range of [0, 1]. There is one polynomial for each dimension that the robot travels through;
we have an x polynomial and a y polynomial for our 2D paths.

The source for the Quintic Polynomial coefficients is Atsushi Sakai’s Python Robotics. The coefficients are set in
accordance with the laws of physics regarding linear movement. The 𝑡 parameter takes the place of time in the physics
equations.

The example code in Python Robotics solves the equation for the coefficients dynamically with numpy but it can be
computed statically. The convenient Symbolab Matrix Equations Calculator solved the matrix of coefficients as a
function of the 𝑡 parameter.

The 𝑡 parameter maps directly to a theoretical duration for the path. The generation process starts with a short duration,
as a faster path would be ideal, and incrementally generates longer and longer paths until the robot’s Constraints are
met.

Note: This duration will differ from the end duration of the path after motion profiling takes place.

2.6.2 Motion Profiles

The trapezoidal motion profile is applied to the path after the 2D positions are computed with the polynomials. This
motion profile constrains the maximum velocity and the maximum acceleration for the robot while leaving jerk un-
constrained. The Quintic Polynomials constrain the path’s acceleration and jerk but do not constrain the velocity so
adding the motion profile is a necessary step.

The profile generates the target velocity and acceleration for the robot at each point along the path through two passes:
a forward pass and then a backward pass. After the velocity and acceleration are determined we reference the physics
equations for linear motion again to set a more accurate time stamp for each of the positions. The forward pass first
sets the starting velocity to the preferred starting velocity set by the user in place of the “dummy” velocity used when
calculating the polynomial. This pass then limits the velocity at each point to no greater than the maximum and then
uses that new velocity value to calculate the necessary acceleration value at the previous point. The backward pass first
sets the ending velocity to the preffered ending velocity and then performs roughly the same limiting as the forward
pass but in reverse. These two passes get the starting and ending velocities matching the velocities set by the user and
keep the path velocities within the limits.

These new velocities and accelerations are used to find new timestamps for each point along the path given the linear
distance between each. These new timestamps do not last long, though, as the next step is to create new points at each
increment of the 𝑑𝑡 value by interpolating between the points at the aforementioned timestamps.
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https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.ipynb
https://www.symbolab.com/solver/matrix-equations-calculator
https://www.linearmotiontips.com/how-to-generate-motion-profile-for-linear-system/
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2.7 Library API

2.7.1 Class Hierarchy

2.7.2 File Hierarchy

2.7.3 Full API

2.8 Release Notes

2.8.1 0.1.0

Initial Public Release

2.9 Resources

The following resources were referenced during the writing of Squiggles:

• Team 254’s contributions to WPILib

• Jaci Brunning’s Pathfinder Library

• Atsushi Sakai’s Python Robotics

2.7. Library API 13

https://github.com/wpilibsuite/allwpilib
https://github.com/JaciBrunning/Pathfinder
https://github.com/AtsushiSakai/PythonRobotics
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